

OPERA: ready to run!

Maria Teresa Muciaccia Università degli Studi & INFN-Bari on behalf of the OPERA Collaboration

MTM

1

The detector is ready for the next phase

...waiting for the first neutrino interaction in emulsion....

Summary

- Aim and strategy of the experiment
- OPERA detector
- CNGS 2007 run
- v_{μ} interactions in a lead-emulsion target
- CNGS 2008 run
- Conclusions

The Oscillation Project with Emulsion tRacking Apparatus OPERA

Long baseline experiment searching for the v_{τ} appearance in a pure v_{μ} beam produced at CERN

CNGS (CERN to Gran Sasso beam)

<E> = 17 GeV, L = 732 km

Hybrid set-up (nuclear emulsions + electronic detectors)

optimized for appearance

< E v _µ >	17 GeV
$(v_e + \bar{v_e})/v_{\mu}$	0.87%
$\bar{\nu}_{\mu} / \nu_{\mu}$	2.1%
v_{τ} prompt	negligible

MTM

Venice, April 17, 2008

Aim of the experiment

All the experiments indicate $\nu_{\mu} {\twoheadrightarrow} \nu_{\tau}$ as the dominant oscillation mode

but still missing: <u>direct</u> observation of oscillated v_{τ}

Detection of v_{τ} CC interactions and *direct* observation of τ decays

Provide an unambiguous evidence for $v_{\mu} \rightarrow v_{\tau}$ oscillations in the parameter region indicated by the atmospheric neutrino data

MTM

Emulsion layers

This technology allows a sub-micron spatial resolution, and a 3D reconstruction of particle

tracks, necessary for τ detection

What the brick cannot do:

• identify muons

• signal a neutrino interaction

OPERA Detector Design

LNGS Hall C

Installation started in May 2003 First observation of the CNGS neutrinos on August 18th, 2006 First observation of the CNGS neutrinos in emulsion on October 2th, 2007

10m **0**m **20m** Target (0.68 kton) 29 lead/emulsion brick walls. **Muon Spectrometer** alternated to scintillator planes, Magnet equipped (T T) to select the brick with 22 RPC planes: containing neutrino interaction ID muons, charge and momentum measurement Venice, April 17, 2008 9

Target:1350 tons

- 5 year running @ 4.5 10 19
- 22,000 neutrino interactions
- ~110 ν_τ interactions
- ~11 ν_τ identified
- <1 event of background

$v_{\mu} \rightarrow v_{\tau}$ Oscillation Search

Number of expected signal and background events

τ decay	Sign	Background	
channel	$\Delta m^2 = 2.5 \times 10^{-3} eV^2$	$\Delta m^2 = 3.0 \times 10^{-3} eV^2$	Daonground
τ → μ	2.9	4.2	0.17
τ → e	3.5	5.0	0.17
τ → h	3.1	4.4	0.24
τ → 3h	0.9	1.3	0.17
ALL	10.4	14.9	0.75

Main background sources:

- charm production and decays
- hadron re-interactions in lead
- large-angle muon scattering in lead

full mixing, 5 year run @ 4.5x10¹⁹ pot/year 25% target mass reduction = 1.35 kton ~150000 bricks

Brick Assembly Machine

Automatic lead/emulsion piling in a dark room

Robots piling up bricks at a rate of ~700 bricks/day

LNGS: Development Facility

Line for the automated emulsion development

5 development chains ready

Maximum rate: ~ 50 bricks/day (16 hours)

2007 run: Interactions outside the Target

331 events passed the analysis cut 303 had been expected: ratio similar to the one observed in 2006

CNGS operated in the same conditions as in 2006 run

2007 run : v Interactions in the Target

32±6 expected events in bricks

38 events registered during the 2007 CNGS run :

29 CC 9 NC

Brick handling, Film Processing, Scanning : first test on real neutrino interactions

Summary of the CS measurements

LNGS- European Scanning Station	All 19	CC 15	NC 4
No candidate on CS	1	1*	0
Good candidate on CS	18	14	4
*fiducial volume acceptance			
Japan - Nagoya Laboratory	All 19	CC 14	NC 5
No candidate on CS	1	0	1
Good candidate on CS	18	14	4

36 out of the 38 events have a good CS tagging most of the predictions were found in ~ 2-3 centimeters

Venice, April 17, 2008

CS to brick connection for neutrino interactions

Data quality looks fine

 $\sigma = 9 \text{ mrad}$

 $\sigma = 54 \ \mu m$

OPERA

Event Location & Data analysis

	Europe	Japan
All events	19 (15 CC, 4 NC)	19 (14 CC, 5 NC)
Events confirmed in the CSd	18	18
Events located in the bricks	14	10
Interactions in dead material	1	1
CS-Brick mismatch	1	1
Analysis in progress	2	6

For **28** events out of 36, analysis is almost completed On this small sample

Wall Finding : > 95% Brick Finding : 80% +- 7%

more data needed for a complete tuning

Scan-back accuracy

Kinematical reconstructed variables

Event 180400976

CC interaction / 9 prongs

32

Tra cks	ТХ	ΤY	IP (μ m)
1	0.012	0.160	1.9
2	-0.739	0.095	4.7
3	-0.033	-0.060	6.3
4	-0.015	0.065	4.1

E γ ₁ : ~ 510 MeV E γ ₂ : ~ 260 MeV θ_{γ γ} : 300 ± 20 mrad

compatible with $\pi^0 \rightarrow 2 \gamma$: estimated π^0 mass: 110 ± 30 MeV

Event 179264151

CC interaction / 5 prongs

Venice, April 17, 2008

Event 180718369

CC interaction / 10 prongs

Trac	ТХ	ΤY	IP	Momentum	
ks			(μ m)	(GeV)	
1	0.005	0.036	3.3	1.7 ^{+0.5} -0.3	
2	0.005	0.139	1.0	parent	
3	0.002	0.064	6.6	>20.0	
4	-0.021	0.064	7.1	2.1 ^{+0.7} -0.4	
5	-0.029	0.046	2.8	>8.4	
6	-0.031	0.064	7.3	2.4 ^{+0.8} -0.5	
7	-0.076	0.068	4.2	1.8 ^{+1.6} -0.6	
8	-0.089	0.141	6.9	2.5 ^{+1.4} _{-0.7}	
9	-0.183	0.106	5.4	0.7 ^{+0.2} _{-0.1}	
10	-0.297	-0.143	19.2	0.7 ^{+0.3} _{-0.1}	
11	-0.067	0.008	7.3	3.5 ^{+3.6} -1.2	e.pa
12	-0.069	0.005	16.8	2.0 ^{+3.1} _{-0.8}	e.pa

Secondary Vertex

Daughter momentum = 3.9 ^{+1.7}_{-0.9}

 θ_{kink} = 0.204 rad

Flight length = 3247 μ m

 $P_T = 796 \text{ MeV}$

 $P_{T}^{MIN} = 606 \text{ MeV} (90\% \text{ C.L.})$

39

Radiation effects on electronics

The failed ventilation electronics were installed along the TSG4 (service gallery), next to the ventilation ducts, and in the TCV4 (ventilation chamber).

In both areas the radiation levels, as predicted by the FLUKA simulations and confirmed by the radiation protection measurements, are far too high for COTS components — the electronics should have failed and they did

During the 2007/2008 shutdown, work is organized to remedy the problem and assure nominal running of the facility for 2008 and beyond.

Actions for 2008 shutdown

General guideline:

Replace damaged electronics

Move the electronics out of the CNGS tunnels as possible

For the equipment which must stay in the area:

Create a "radiation-safe" area by adding adequate shielding and move all the electronics into this area
Address the sensitivity to radiation of the installed electronics and investigate upgrade possibilities
Install a radiation monitoring system for electronics as in LHC

CNGS repair state

Radiation damages repair and protection:

the work is fully funded electronics repair and reshuffling has started shielding plugs defined, civil engineering starting completion of the work expected by the end of week 23 (June 6th) stable beam during week 25 (~June 20th)

2008 run : expected statistics

	Expected 2008 run	Nominal CNGS	
Number of days	130	200	
Super Cycle (sec.)	48	27.6	
Circulating proton	2x2 10 ¹³	4.8 10 ¹³	
efficiency	80%	55%	
Integrated pot	2.1 10 ¹⁹	4.5 1	0 ¹⁹
If no delay in the C Total number of intera	NGS repair	~ 2000	
Tau candidate (@2.5	10 ⁻³ eV ²)	~1	
		~1	10 evts/week
		missioning) in 2009	
no wre running (only commissioning) in 2008			
MTM	Venice, April 1	7, 2008	45

Conclusions

Neutrino events have been observed in the OPERA bricks during the short CNGS run of 2007: With the collected small sample, several issues were faced and solved

Brick candidate extraction, brick handling, CS scanning, vertex location: tested the full chain

Analysis and kinematical reconstruction of the neutrino interactions in emulsion are in progress

Next CNGS run with full target expected by june 2008 : First OPERA year !

The detector is ready for the next phase

...waiting for the first v, interaction in emulsion....

